Sex Ratio Meiotic Drive as a Plausible Evolutionary Mechanism for Hybrid Male Sterility
نویسندگان
چکیده
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome--two patterns widely observed across animals.
منابع مشابه
Reproductive Isolation and X Chromosome Meiotic Drive in Cyrtodiopsis Stalk-eyed Flies
Title of Document: REPRODUCTIVE ISOLATION AND X CHROMOSOME MEIOTIC DRIVE IN CYRTODIOPSIS STALK-EYED FLIES. Sarah J. Christianson, Doctor of Philosophy, 2008 Directed By: Professor Gerald Wilkinson, Department of Biology Haldane’s rule states that when one sex of hybrids shows sterility or inviability it tends to be the heterogametic sex. This pattern is considered a fundamental law of speciatio...
متن کاملCauses of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane's rule and related phenomena.
Unisexual hybrid disruption can be accounted for by interactions between sex ratio distorters which have diverged in the species of the hybrid cross. One class of unisexual hybrid disruption is described by Haldane's rule, namely that the sex which is absent, inviable or sterile is the heterogametic sex. This effect is mainly due to incompatibility between X and Y chromosomes. We propose that t...
متن کاملThe role of meiotic drive in hybrid male sterility.
Meiotic drive causes the distortion of allelic segregation away from Mendelian expected ratios, often also reducing fecundity and favouring the evolution of drive suppressors. If different species evolve distinct drive-suppressor systems, then hybrid progeny may be sterile as a result of negative interactions of these systems' components. Although the hypothesis that meiotic drive may contribut...
متن کاملDivergence of Meiotic Drive-suppression Systems as an Explanation for Sex-biased Hybrid Sterility and Inviability.
Two empirical generalizations about speciation remain unexplained: the tendency of the heterogametic sex to be sterile or inviable in F1 hybrids (Haldane's rule), and the tendency of the X chromosome to harbor the genetic elements that cause this sex bias in hybrid fitness. I suggest that divergence of meiotic drive systems on the sex chromosomes can explain these observations. The theory follo...
متن کاملMale sterility and meiotic drive associated with sex chromosome rearrangements in Drosophila. Role of X-Y pairing.
In Drosophila melanogaster, deletions of the pericentromeric X heterochromatin cause X-Y nondisjunction, reduced male fertility and distorted sperm recovery ratios (meiotic drive) in combination with a normal Y chromosome and interact with Y-autosome translocations (T(Y;A)) to cause complete male sterility. The pericentromeric heterochromatin has been shown to contain the male-specific X-Y meio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015